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A simple method for calculation of the bulk     
modulus of boron-doped diamond 

Dr. V. Katsika-Tsigourakou 

 
Abstract— Boron-doped diamond undergoes an insulator-metal transition at some critical value (around 2.21 at %) of the dopand 

concentration. Here, we report a simple method for the calculation of its bulk modulus, based on the thermodynamical model, by Varotsos 

and Alexopoulos, that has been originally suggested for the interconnection between the defect formation parameters in solids  and bulk 

properties. The results obtained at the doping level of 2.6 at %, which was later improved at the level 0.5 at %, are in agreement with the 

experimental values. 

Index Terms— Compressibility, Point defects, Mixed crystals, Elastic properties, Defect volume, Activation energy, Boron-doped diamond 

——————————      —————————— 

1 INTRODUCTION                                                                     

IN a very recent careful work, Pandey, Alam and Kumar 

[1] studied the pseudo elastic behavior of liquid alloys us-

ing pseudo potential model based on the density functional 

theory with both the local density approximation and the 

generalized gradient approximation for the exchange corre-

lation function. Very interesting results were obtained 

which showed that the elastic constants of the elemental 

cubic model depend primarily on the bonding variance, the 

density at the cell boundary and the symmetry of the lat-

tice.  

 In the above paper Pandey et al. applied the model 

of  Varotsos  and Alexopoulos using slight modification in 

volume due to concentration. It is the scope of this short 

paper to extend the usefulness of the challenging findings 

of Pandey et al. and show that the use of Varotsos  and 

Alexopoulos model can also serve for treating a problem 

(see below) of major technological interest.  

Diamond has been extensively studied (e.g., see  

[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]) in view of its 

remarkable properties. For example, it has a very large De-

bye temperature [13] and the largest elastic moduli known 

for any material and correspondingly the largest sound 

velocities [13], [14]. Nowdays, the diamond anvil cell 

(DAC) technique, which is extensively used as a unique 

tool for producing high pressure in the laboratory [15], ex-

ploits the extreme hardness of diamond. 
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Diamond is a wide band-gap semiconductor. The 

high interest of studying both doped natural diamonds and 

high-level doped synthetic diamonds [16] originates from 

the discovery of the profound influence of dopants on their 

physical properties. Specifically, doping diamond with bo-

ron leads to the insulator-metal transition [17]. Electrical 

conductivity measurements of diamond revealed that for 

boron concentrations higher than some critical value esti-

mated as 2.21 at %, the conductivity on the metallic side of 

the transition at low temperature a Tb law. For metallic 

samples, b was found to be 1/3, approaching 1/2 at higher 

concentrations [17]. Some uncertainty remains in predict-

ing the boron concentration above which metallic conduc-

tion takes place [17], [18], [19], [20], [21]. 

 The isothermal bulk modulus B (and the compress-

ibility  , 1/ B  ) can be used as a quantitative character-

istic describing relations between the structure and atomic 

forces, from one side and the physical properties of solids, 

from another side.  Dubrovinskaia et al. [22] reported the 

results of high pressure-high temperature synthesis of bo-

ron-doped diamond and the results of experimental deter-

mination of its bulk modulus. In addition, they proceeded 

to detailed a theoretical calculation which suggested very 

little (within computational uncertainty) effect of the dop-

ing on the compressibility of diamond for impurity concen-

trations up to 3 at %. These calculations also confirmed that 

boron atoms prefer to substitute C-atoms in a diamond 

structure. It is the aim of this short paper to draw attention 

to the following point: Instead of the aforementioned tedi-

ous theoretical calculation, a simple thermodynamical 

model can be alternatively used for the estimation of the 
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boron-concentration dependence of the compressibility of 

diamond. This thermodynamical model, has been original-

ly suggested for the formation and/or migration processes 

of defects in solids [23], [24], [25] and has been successfully 

applied in a large variety of solids (including the case of 

noble gas solids [26]), that have been reviewed in [27] and 

[28]. The same model was extended [27] to describe the 

physical properties of the electric signals that precede rup-

ture [29]. In the next section, we recapitulate this model 

(termed cB  model, see below) and then in section 3 we 

apply it to the case of the compressibility of boron-doped 

diamond. We note that the success of this model to repro-

duce the self-diffusion coefficients of diamond has been 

already checked in [30]. 

 

2 THE MODEL  

Let us denote 1V  and 2V  the corresponding molar volumes, 

i.e. 1 1V N  and 2 2V N  (where N  stands for Avogadro’s 

number) for diamond (density 3.51 gr/cm3) and B4C (den-

sity 2.48 gr/cm3) respectively. Defining a “defect volume” 

[31]  d  as the variation of the volume 1V , if one “mole-

cule” of type “1” is replaced by one “molecule” of type “2”, 

it is evident that the addition of one “molecule” of type “2” 

to a crystal containing N  “molecules” of type “1” will in-

crease its volume by 
1

d  . Assuming that d  is inde-

pendent of composition, the volume N nV   of a crystal con-

taining N  “molecules” of  type (1) and  n  “molecules” of 

type “2” can be written as [27], [28], [29], [30], [31]: 

                           
1[1 ( )] d

N nV n N V n                                   (1)                              

The compressibility   of the doped diamond can be found 

by differentiating (1) with respect to pressure which finally 

gives [27]:             

                1 1 1 1

d d

N nV V n N N V    
                (2)     

where d  denotes the compressibility of the volume d , 

defined as [32]  (1 ) ( )d d d

Td dP     .  

Within the approximation of the hard-spheres model, the 

“defect-volume” d  can be estimated from: 

                        
2 1( )d V V N                                           (3)                       

 Thus, if N nV   can be determined from (1) (upon either 

considering (3) or other type of measurements and/or 

method), the compressibility   can be found from (2) if a 

procedure for the estimation of  d  will be employed. In 

this direction, we adopt a thermodynamical model, termed 

cB  model, for the formation and migration of  the defects 

in solids [23], [24], [25], [26], [27], [28]. According to this 

model, the defect Gibbs energy 
ig  is interconnected with 

the bulk properties of the solid through the relation 

i ig c B   where B  stands, as mentioned, for the isother-

mal bulk modulus ( 1/ ) ,   the mean volume per atom 

and ic  is dimensionless quantity. (The superscript i  refers 

to the defect process under consideration, e.g. defect forma-

tion, defect migration and self-diffusion activation). By dif-

ferentiating this relation in respect to pressure P , we find 

the defect volume i  [ ( ) ]i

Tdg dP . The compressibility 
,d i    defined  by   ,d i [ ( ) ]i

Td n dP  ,  is given   by: 

             , 2 2(1 ) ( ) [( ) 1]d i

TB d B dP dB dP                          (4)                              

This relation states that the compressibility ,d i  does not 

depend on the type i of the defect process. Thus, it seems 

reasonable to assume [32], [27] that the validity of  (4) holds 

also for the compressibility d  involved in (2), i.e., 

              2 2

1 1 1( ) [( ) 1]d

Td B dP dB dP                  (5)     

where the subscript <1> in the quantities at the right side 

denotes that they refer to the undoped diamond crystal. 

 

3  APPLICATION OF THE MODEL TO THE BO-
RON-DOPED DIAMOND 
 

In general, the quantities 1dB dP  and 2 2

1d B dP , can be 

roughly estimated from the modified Born model  accord-

ing to [27], [31]:  

1 ( 7) 3BdB dP n   and 2 2

1 1( ) (4 9)( 3)BB d B dP n          (6)                          

where Bn  is the usual Born exponent. In cases, however, 

where the Born model does not provide an adequate de-

scription, we can solely rely on (4), but not on (6). In other 

words, if  Born model holds, we calculate the first and sec-

ond pressure derivatives of the bulk modulus on the basis 

of  (6) and then insert them into (4). Otherwise, we insert 

into (4) the first and second pressure derivative of the bulk 

modulus deduced from the elastic data under pressure (ob-

tained either from laboratory measurements or from micro-

scopic calculations) using a least squares fit to a second or-

der Murnaghan equation. The results of these possibilities 

are now described below for the boron-doped diamond. 

We shall use hereafter the experimental value 1B =442 GPa 

obtained in Refs [8], [22], [33] for the pure diamond crystal.  

 In Dubrovinskaia et al. [22], the experimental pres-

sure-volume data were fitted using the third order Birch- 

Murnaghan equation of state. This fitting procedure for 

(undopted) diamond gave 1B =442(4) GPa, 
1B  =3.2(2) –

where 
1B   denotes the first pressure derivative of 1B - and 

the zero- pressure volume 3.4157(9) cm3/mol which within 

the uncertainty coincide with the data from [8]. For boron-

doped diamond, at the doping level of 2.6 at % they found 

B =436(7) GPa, B =3.1(2)  and the zero- pressure volume 
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3.4319(9) cm3/mol. 

 Using the aforementioned values for the zero- 

pressure volume of the undoped and the boron-doped di-

amond we determined d  on the basis of  (1). Let us now 

investigate the ( 1/ )B   value resulting from (2) at the 

doping level of 2.6 at % when employing the determination 

of the d -value by means of the procedures described 

above:  

First, when employing the modified Born model –and 

hence use (6)- we find B  433 GPa. This is marked with 

open circle in Fig. 1 and is very close to the experimental 

value B =436(7) GPa measured in  [22] (marked with cross 

in Fig. 1). 

Second, we now employ the Morse potential parameters 

determined –in the frame of an analytic mean field ap-

proach- by fitting the compression experimental data of 

diamond at ambient temperature. For example see Fig. 3 of  

[34] which, if described by an expansion of the isothermal 

bulk modulus carried out to second order, gives 
1B  =3.3 

and 
1B  =-0.0024 GPa-1. By inserting these 

1B   and 
1B   val-

ues into (5) we find d  and then from (2) we get B =433 

GPa (marked with open square in Fig. 1). This is also very 

close to the experimental value B =436(7) GPa reported in 

[22]. Finally, we note that the latter calculation was repeat-

ed by using, instead of the aforementioned doping level 2.6 

at %, the value of 0.5 at % that was later reported  [35] as 

being more representative of the reality since it was de-

duced after closer investigations of the microstructure of 

boron-doped diamond and of boron distribution. This led 

to the calculated value B =441.9 GPa marked with an in-

verted triangle in Fig. 1, which also agrees with the exper-

imental results, if the experimental error is considered.  
 

 
 

4 CONCLUSION 

 

To summarize, for boron-doped diamond, at doping level 

of 2.6 %, Dubrovinskaia et al [22] reported the experimental 

value of the isothermal bulk modulus B =436 GPa. The val-

ues of  ( 1/ )B   calculated here on the basis of  (2) are 

found to be 433 GPa when using the d -value obtained 

from (4) in terms of 
1B   and 

1B  , of (undoped) diamond 

estimated from the either modified Born model or its ana-

lytic equation of state based on an analytic mean field ap-

proach. In view of a large error in the boron- content, the 

position of this experimental point in Fig. 1 can be found 

[33] at a concentration as low as 2 at %. In this case the cal-

culated B -values from (2) are found to be around 435 GPa, 

thus being again in very good agreement with the experi-

mental value [22] of 436 GPa.  Finally, if we alternatively 

use an even lower concentration of 0.5 at %, which was lat-

er [35] reported as being closer to the reality, our calculated 

value is around 441.9 GPa which also agrees with the ex-

perimental results, if the experimental uncertainty is con-

sidered. For the sake of comparison, we note that the calcu-

lated B -value in the framework of the density functional 

method [33] is around 421 GPa.   

 

 

Fig. 1.  Dependence of the isothermal bulk modulus on the 
boron concentration. Experimental values obtained in  [22], 

[33] are shown with crosses. Calculated results of the bulk 
moduli with substitutional (solid circles) and interstitials 
(squares) boron impurities according to  [22], [33]. The results 

calculated in this paper are designated with open circles and 
open squares when employing (2) and using the compressibil-

ity d  of the defect volume obtained either from the modified 

Born model or from the analytic equation of state in  [34] de-

scribed in the text. The latter calculation was repeated by 
considering, instead of  2.6 at %, the more recent value 0.5 at 

% reported in  [35], and led to the value B =441.9 GPa  

shown by the inverted triangle.  
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